РЫБИНСКИЙ ФИЛИАЛ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО АВТОНОМНОГО УЧРЕЖДЕНИЯ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ЯРОСЛАВСКОЙ ОБЛАСТИ ЦЕНТРА ДЕТСКО-ЮНОШЕСКОГО ТЕХНИЧЕСКОГО ТВОРЧЕСТВА

Детский технопарк «Кванториум»

Согласовано: Методический совет от «23 » апреца 2020 г. Протокол № 24 а-57

Техническая направленность

Дополнительная общеобразовательная общеразвивающая программа

«Разработка приложений виртуальной и дополненной реальности»

Возраст обучающихся: 13-18 лет Срок реализации: 1 год

Автор-составитель:

Смирнов Павел Николаевич, педагог дополнительного образования

г. Рыбинск 2020 год

ОГЛАВЛЕНИЕ

1	. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
	1.1. Цели и задачи	4
	1.2. Принципы и подходы к формированию образовательной программы основного общего образования	5
	1.3. Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования	6
	1.4. Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования	. 12
	1.5. Особенности организации образовательного процесса	.13
2	. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН	.15
3	. СОДЕРЖАНИЕ программы	.16
4	. ОБЕСПЕЧЕНИЕ ПРОГРАММЫ	.18
	4.1. Методическое обеспечение	.18
	4.2. Материально-техническое обеспечение	.19
	4.3. Кадровое обеспечение	.19
5	. СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	. 20
	5.1 Нормативно-правовые документы	. 20
	5.2 Информационные ресурсы для педагогов и обучающихся	.21

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная общеразвивающая программа разработана в соответствии с Федеральным законом от 29.12.12 г. №273-ФЗ «Об образовании в Российской Федерации»; приказом Министерства образования и науки Российской Федерации (Минобрнауки России) от 09 ноября 2018 г. № 196 г. Москва «Об утверждении Порядка организации и образовательной деятельности осуществления ПО дополнительным общеобразовательным программам»; Концепцией развития дополнительного образования детей в Российской Федерации, утвержденной распоряжением РΦ 4.09.2014 Γ. $N_{\underline{0}}$ 1726-p; Правительства санитарноэпидемиологическими правилами и нормативами 2.4.4.3172-14 «Требования к устройству, содержанию и организации режима работы образовательных (утв. дополнительного образования детей организаций государственным санитарным врачом РФ от 04.07.2014 г. № 41); Государственной программой РФ «Развитие образования на 2013-2020 годы, утвержденной постановлением Правительства РФ от 15.04.2014 г. № 295; Стратегией инновационного развития Российской Федерации на период до 2020 года, утвержденным распоряжением Правительства РФ от 08.12.2011 года № 2227-р; Федеральной целевой программой развития образования на 2016-2020 годы, утвержденной Постановлением Правительства РФ от 23.05.2015 года № 497; Уставом ГОАУ ДО ЯО Центра детско-юношеского технического творчества.

Настоящая дополнительная общеобразовательная общеразвивающая программа имеет **техническую направленность** и рассчитана на обучение школьников разработке игр и приложений в среде Unity, а также знакомство с проектно-исследовательской деятельностью и подготовку проектов обучающимися в области технологий виртуальной и дополненной реальности и информационных технологий.

Вид программы: комплексная, модифицированная.

Категория обучающихся: программа предназначена для работы с обучающимися 13-18 лет (7-11 классы общеобразовательной школы).

Актуальность программы

Виртуальная и дополненная реальности — особые технологические направления, тесно связанные с другими. Эти технологии включены в список ключевых и оказывают существенное влияние на развитие рынков. Практически для каждой перспективной позиции будущего крайне полезны будут знания из области 3D-моделирования, основ программирования, компьютерного зрения и т. п.

Согласно многочисленным исследованиям, VR/AR-рынок развивается по экспоненте – соответственно, ему необходимы компетентные специалисты.

Синергия методов и технологий, используемых в направлении «Разработка приложений виртуальной и дополненной реальности», даст ребенку уникальные метапредметные компетенции, которые будут полезны в

сфере проектирования, моделирования объектов и процессов, разработки приложений и др.

Новизна программы

Новизна программы заключается в создании уникальной образовательной среды, формирующей проектное мышление обучающихся за счёт трансляции проектного способа деятельности в рамках решения конкретных проблемных ситуаций.

Согласно многочисленным исследованиям, VR/AR-рынок развивается по экспоненте, соответственно, ему необходимы компетентные специалисты — этим и обуславливается актуальность программы. Она предполагает формирование у обучающихся представлений о тенденциях в развитии современной ИТ-отрасли.

Отличительные особенности программы

Отличительной особенностью данной программы от уже существующих образовательных программ является её направленность на развитие у обучающихся компетенций проектной деятельности: умение использовать инструменты гибких подходов к управлению проектами (SCRUM), использование подходов дизайн-мышления, методологии ТРИЗ и др.

К отличительным особенностям настоящей программы относятся модульная и кейсовая система обучения, проектная деятельность обучаемого, освоение навыков XXI века.

Занятия по данной программе могут проводиться как в очной форме, так и с применением дистанционных технологий и (или) электронного обучения.

По данной программе в летний период может быть организована работа с обучающимися, которые проходят подготовку для участия в массовых мероприятиях, работают над индивидуальными или командными проектами, а также проявляют особый интерес к выбранному виду деятельности.

Образовательный процесс по данной программе ведется в соответствии с годовым календарным учебным графиком на текущий учебный год, утвержденным приказом директора ГОАУ ДО ЯО ЦДЮТТ.

1.1. Цели и задачи

Цель: вовлечь обучающихся в проектно-исследовательскую деятельность в области проектирования и конструирования виртуальной и дополнительной реальности через стимулирование интереса к информационным технологиям посредством кейсовой системы обучения.

Задачи:

Обучающие:

- сформировать навыки работы с информацией;
- обучить работе с высокотехнологичными устройствами;

- обучить базовым навыкам разработки приложений в области виртуальной и дополненной реальности;
- обучить навыкам 3D моделирования, программирования, разработки собственных устройств;
- обучить работе с 3D сканером и принтером;
- углубить знания основ проектирования и управления проектами;
- обучить проведению исследований, презентаций и межпредметной позиционной коммуникации;
- систематизировать знания в области виртуальной и дополненной реальности;
- подготовить осознанный выбор дальнейшей траектории обучения в мобильном «Кванториуме».

Развивающие:

- сформировать интерес к техническим наукам и, в частности, к технологиям виртуальной и дополненной реальности;
- развивать у обучающихся память, внимание, логическое, пространственное и аналитическое мышление; креативность и лидерство;
- стимулировать познавательную и творческую активность обучающихся, посредством включения их в различные виды соревновательной и конкурсной деятельности;
- развивать soft-компетенции, необходимые для успешной работы вне зависимости от выбранной профессии;
- развивать навыки инженерно-конструкторской, исследовательской и проектной деятельности.

Воспитательные:

- формировать конструктивное отношение к инженерной работе и развивать умение работать в команде, координацию действий;
- расширять кругозор и культуру, межкультурную коммуникацию;
- воспитывать уважение к интеллектуальному и физическому труду.

1.2. Принципы и подходы к формированию образовательной программы основного общего образования

Программа реализуется:

- в непрерывно-образовательной деятельности, совместной деятельности, осуществляемой в ходе режимных моментов, где обучающийся осваивает, закрепляет и апробирует полученные умения;
- в самостоятельной деятельности обучающихся, где обучающийся может выбрать деятельность по интересам, взаимодействовать со сверстниками на равноправных позициях, решать проблемные ситуации и др.;
- во взаимодействии с семьями детей.

Программа может корректироваться в связи с изменениями:

- нормативно-правовой базы дошкольного образования;
- видовой структуры групп;
- образовательного запроса родителей.

Подходы к формированию программы:

- Личностно-ориентированный. Организация образовательного процесса с учётом главного критерия оценки эффективности обучающегося — его личности. Механизм — создание условий для развития личности на основе изучения способностей обучающегося, его интересов, склонностей.
- Деятельностный. Организация деятельности в общем контексте образовательного процесса.
- Ценностный. Организация развития и воспитания на основе общечеловеческих ценностей, а также этических, нравственных и т. д.
- Компетентностный. Формирование готовности обучающихся самостоятельно действовать в ходе решения актуальных задач.
- Системный. Методологическое направление, в основе которого лежит рассмотрение обучающегося как целостного множества элементов из отношений и различных связей между ними.
- Диалогический. Организация процесса с учётом принципа диалога, субъект-субъектных отношений.
- Проблемный. Формирование программы с позиций комплексного и модульного представления её структуры как системы подпрограмм по образовательным областям и детским видам деятельности, способствующим целевым ориентирам развития.
- Культурологический. Организация процесса с учётом потенциала культуросообразного содержания дошкольного образования.

1.3. Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования

1.3.1. Общие положения

Программа даёт обучающимся необходимые компетенции для дальнейшего углубленного освоения дизайнерских навыков и методик проектирования. Основными направлениями в изучении технологий виртуальной и дополненной реальности, с которыми познакомятся ученики в рамках программы, станут начальные знания о разработке приложений для различных устройств, основы компьютерного зрения, базовые понятия 3D моделирования.

Через знакомство с технологиями создания собственных устройств и разработки приложений будут развиваться исследовательские, инженерные и проектные компетенции.

Освоение этих технологий подразумевает получение ряда базовых компетенций, владение которыми критически необходимо любому специалисту на конкурентном рынке труда в STEAM-профессиях.

1.3.2. Структура планируемых результатов

Планируемые результаты опираются на ведущие целевые установки, отражающие основной, сущностный вклад каждой изучаемой программы в развитие личности, обучающихся, их способностей.

В структуре планируемых результатов выделяются следующие группы:

- 1. Личностные результаты освоения основной образовательной программы представлены в соответствии с группой личностных результатов.
- 2. Метапредметные результаты освоения основной образовательной программы представлены в соответствии с подгруппами универсальных учебных действий.
- 3. Предметные результаты освоения основной образовательной программы представлены в соответствии с группами результатов учебного предмета.

1.3.3. Личностные результаты

Программные требования к уровню воспитанности (личностные результаты):

- сформированность внутренней позиции обучающегося, эмоционально-положительное отношение обучающегося к школе, ориентация на познание нового;
- ориентация на образец поведения «хорошего ученика»;
- сформированность самооценки, включая осознание своих возможностей в учении, способности адекватно судить о причинах своего успеха/неуспеха в учении; умение видеть свои достоинства и недостатки, уважать себя и верить в успех;
- сформированность мотивации к учебной деятельности;
- знание моральных норм и сформированность морально-этических суждений, способность к решению моральных проблем на основе координации различных точек зрения, способность к оценке своих поступков и действий других людей с точки зрения соблюдения/нарушения моральной нормы.

Программные требования к уровню развития:

- сформированность пространственного мышления, умение видеть объём в плоских предметах;
- умение обрабатывать и систематизировать большое количество информации;

- сформированность креативного мышления, понимание принципов создания нового продукта;
- сформированность усидчивости, многозадачности;
- сформированность самостоятельного подхода к выполнению различных задач, умение работать в команде, умение правильно делегировать задачи.

1.3.4. Метапредметные результаты

Математика

Статистика и теория вероятностей

Выпускник научится:

- представлять данные в виде таблиц, диаграмм;
- читать информацию, представленную в виде таблицы, диаграммы.

В повседневной жизни и при изучении других предметов выпускник сможет:

- извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Наглядная геометрия

Геометрические фигуры

Выпускник научится:

- оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.
- описывать взаимное расположение прямых и плоскостей в пространстве
- распознавать развертки простейших геометрических фигур

В повседневной жизни и при изучении других предметов выпускник сможет:

решать практические задачи с применением простейших свойств фигур.

Физика

Выпускник научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;

 использовать при выполнении учебных задач научнопопулярную литературу о физических явлениях, справочные материалы, ресурсы интернета.

Информатика

Выпускник научится:

- различать виды информации по способам её восприятия человеком и по способам её представления на материальных носителях;
- приводить примеры информационных процессов (процессов, связанных с хранением, преобразованием и передачей данных) в живой природе и технике;
- классифицировать средства ИКТ в соответствии с кругом выполняемых задач.

Математические основы информатики

Выпускник получит возможность:

- познакомиться с примерами математических моделей и использованием компьютеров при их анализе;
- понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием.

Использование программных систем и сервисов Выпускник научится:

- классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы).

Выпускник овладеет (как результат применения программных систем и интернет-сервисов в данном курсе и во всём образовательном процессе):

- навыками работы с компьютером;
- знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;
- различными формами представления данных (таблицы, диаграммы, графики и т. д.);
- познакомится с программными средствами для работы с аудиовизуальными данными и соответствующим понятийным аппаратом.
- понимать смысл понятия «алгоритм» и широту сферы его применения; анализировать предлагаемые последовательности команд на предмет наличия у них свойств алгоритма

Выпускник получит возможность (в данном курсе и иной учебной деятельности):

- практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- познакомиться с примерами использования математического моделирования в современном мире;
- познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной подписи); познакомиться с возможными подходами к оценке достоверности информации (пример: сравнение данных из разных источников);
- познакомиться с примерами использования ИКТ в современном мире;
- исполнять алгоритмы, содержащие ветвления и повторения; составлять алгоритмы с заданной системой команд; разрабатывать и записывать на языке программирования эффективные алгоритмы
- познакомится с понятием компьютерная графика (растровая, векторная). Интерфейс графических редакторов. Форматы графических файлов.

Технология

Формирование технологической культуры и проектнотехнологического мышления обучающихся

Выпускник научится:

- следовать технологии, в том числе в процессе изготовления субъективно нового продукта;
- оценивать условия применимости технологии, в том числе с позиций экологической защищённости;
- прогнозировать ПО известной технологии выходы (характеристики продукта) В зависимости OT изменения входов/параметров/ресурсов, проверять прогнозы опытноэкспериментальным путём, в том числе самостоятельно планируя такого рода эксперименты;
- в зависимости от ситуации оптимизировать базовые технологии (затратность — качество), проводить анализ альтернативных ресурсов, соединять в единый план несколько технологий без их видоизменения для получения сложносоставного материального или информационного продукта;
- проводить оценку и испытание полученного продукта;
- проводить анализ потребностей в тех или иных материальных или информационных продуктах;

- описывать технологическое решение с помощью текста, рисунков, графического изображения;
- анализировать возможные технологические решения, определять их достоинства и недостатки в контексте заданной ситуации;
- проводить и анализировать разработку и/или реализацию прикладных проектов, предполагающих:
- определение характеристик и разработку материального продукта, включая его моделирование в информационной среде (конструкторе), встраивание созданного информационного продукта в заданную оболочку,
- изготовление информационного продукта по заданному алгоритму в заданной оболочке;
- проводить и анализировать разработку и/или реализацию технологических проектов, предполагающих:
- оптимизацию заданного способа (технологии) получения требующегося материального продукта (после его применения в собственной практике),
- разработку (комбинирование, изменение параметров и требований к ресурсам) технологии получения материального и информационного продукта с заданными свойствами;
- проводить и анализировать разработку и/или реализацию проектов, предполагающих:
- планирование (разработку) материального продукта в соответствии с задачей собственной деятельности (включая моделирование и разработку документации),
- планирование (разработку) материального продукта на основе самостоятельно проведённых исследований потребительских интересов.

Выпускник получит возможность научиться:

- выявлять и формулировать проблему, требующую технологического решения;
- модифицировать имеющиеся продукты в соответствии с ситуацией/заказом/потребностью/задачей деятельности и в соответствии с их характеристиками разрабатывать технологию на основе базовой технологии;
- технологизировать свой опыт, представлять на основе ретроспективного анализа и унификации деятельности описание в виде инструкции или технологической карты.

1.3.5. Предметные результаты

Программные требования к знаниям (результаты теоретической подготовки):

- правила безопасной работы с электронно-вычислительными машинами и средствами для сбора пространственных данных;

- умение активировать запуск приложений виртуальной реальности, устанавливать их на устройство и тестировать;
- навыки калибровки межзрачкового расстояния;
- навыки дизайн-аналитики;
- умение анализировать процессы взаимодействия пользователя со средой;
- умение выявлять и фиксировать проблемные стороны существования человека в предметной среде;
- навыки дизайн-проектирования;
- умение формулировать задачу на проектирование исходя из выявленной проблемы;
- знание и умение пользоваться различными методы генерирования идей;
- работа с графическими редакторами;
- навыки прототипирования
- базовые навыки 3D моделирования, умение подготовить файл к печати на 3D принтере;
- знание и понимание основных понятий: дополненная реальность (в т.ч. ее отличия от виртуальной), смешанная реальность, оптический трекинг, маркерная и безмаркерная технологии, реперные точки;
- знание пользовательского интерфейса профильного ПО, базовых объектов инструментария;
- знание основ 3D моделирования;
- умение компилировать приложения дополненной реальности, устанавливать их на мобильные устройства и тестировать, выгружать в общий доступ с аккаунта разработчика.

Программные требования к умениям и навыкам (результаты практической подготовки):

- самостоятельно решать поставленную задачу, анализируя и подбирая материалы и средства для её решения;
- навыки создания AR (Augmented Reality = дополненная реальность) приложений;
- моделировать 3D-объекты;
- навыки создания VR (Virtuality Reality = виртуальная реальность) приложений;
- защищать собственные проекты;

1.4. Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования

Виды контроля:

- промежуточный контроль, проводимый во время занятий;

итоговый контроль, проводимый после завершения всей учебной программы.

Формы проверки результатов:

- наблюдение за обучающимися в процессе работы;
- игры;
- индивидуальные и коллективные творческие работы;
- беседы с обучающимися и их родителями.

Формы подведения итогов:

- выполнение практических работ;
- тесты;
- анкеты;
- защита проекта.

Итоговая аттестация обучающихся проводится по результатам подготовки и защиты проекта.

Для оценивания деятельности обучающихся используются инструменты само- и взаимооценки.

1.5. Особенности организации образовательного процесса

Срок реализации программы: программа рассчитана на один год, 36 академических часов в учебный год.

Режим реализации программы: занятия проводятся в течение трех недель за учебный год, 12 часов в неделю, по 2 академических часа в день с перерывом 5-10 минут.

Наполняемость групп: наполняемость группы не менее 8 и не более 14 человек.

Возраст и категория обучающихся: программа разработана для работы с обучающимися от 13 до 18 лет (7-11 классы общеобразовательных организаций). Программа предусматривает отбор мотивированных детей для участия в проектной работе, а также в конкурсной и соревновательной деятельности регионального и более высокого уровня.

Основные положения программы

При изучении программы обучающиеся познакомятся с различными устройствами, с областями применения технологий виртуальной и дополненной реальности, с задачами, которые можно решать с помощью этих технологий, а также смогут сами применять их в своей повседневной жизни.

Обучающиеся смогут познакомиться с историей развития технологий виртуальной и дополненной реальности, познакомятся с устройством шлема виртуальной реальности.

Обучающиеся усвоят принцип создания приложений, узнают, как создаются приложения с применением технологий виртуальной и дополненной реальности, как производится настройка устройств и запуск приложений.

Обучающиеся углубятся в технологию создания 3D графики, самостоятельно создадут 3D модели для решения различных задач.

Учащиеся познакомятся с различными устройствами прототипирования, узнают общие принципы работы устройств, сферы их применения и продукты деятельности данных устройств, научатся готовить 3D модели для печати с помощью экспорта данных.

Кроме того, в рамках программы учащиеся выберут проектное направление, научатся ставить задачи, исследовать проблематику, планировать ведение проекта и грамотно распределять роли внутри команды.

Обучающиеся изучат основы подготовки презентации, создадут её и подготовятся к представлению реализованного прототипа.

2. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

		Количество часов			
	Раздел и темы		Практика	Всего	Форма контроля
1	Введение в образовательную программу. Техника безопасности	1	0	1	
2	Моделирование в программе Blender низкополигональных персонажей, транспорта, природных объектов (растительности)	5	5	10	Проверка моделей
3	Кейс «Творим в коде». Программирование на С# в среде Unity. Управление игроком. Основные игровые процессы. Аудиои видеоэффекты. Игровая механика. Интерфейс игры	5	10	15	Презентация проекта
4	Кейс «Пересечение миров». Знакомство с Vuforia в среде Unity	3	3	6	Презентация проекта
5	Кейс «Побег из виртуальности». Знакомство с разработкой VR – приложения в Unity	1	3	4	Презентация проекта
	Итого:	15	21	36	

3. СОДЕРЖАНИЕ ПРОГРАММЫ

Тема 1 Введение в образовательную программу. Техника безопасности. – 1 часа.

Теория: Техника безопасности. Как появились технология VR и AR/ Что такое VR и AR. В чём их отличия? Что может технология виртуальной и дополненной реальности. Где и как используется. Перспективы развития данных технологий. Просмотр видео.

Составляющие удачного VR — приложения. Контент и способы его создания. Чем обусловлен эффект погружения?

Практика: Работа в приложениях для шлема виртуальной реальности. Вводное ознакомление с интерфейсом основных программ для работы с 3D графикой, виртуальной и дополненной реальности. Запуск приложений виртуальной реальности. Выявление оптических и графических особенностей. Интерактивное взаимодействие с виртуальным миром.

Самостоятельная работа: Подготовка презентации о понравившейся технологии и её программном и аппаратном обеспечении.

Тема 2 Моделирование в программе Blender низкополигональных моделей персонажей, транспорта, природных объектов (растительности). – 10 часов.

Теория: Базовые элементы 3-х мерных моделей. Оптимизация сетки объектов. Поиск обучающих материалов по моделированию. Составляющие удачного VR — приложения. Контент и способы его создания. Чем обусловлен эффект погружения?

Практика: Твердотельное моделирование в среде Blender на основе видеоуроков youtube. Основные концепции моделирования низкополигональных объектов. Запуск приложений виртуальной реальности. Выявление оптических и графических особенностей. Интерактивное взаимодействие с виртуальным миром.

Самостоятельная работа: Самостоятельное изучение заданных видеоуроков youtube. Создание упрощенных 3D моделей.

Тема 3 Кейс «Творим в коде». Программирование на С# в среде Unity. Управление игроком. Основные игровые процессы. Аудио- и видеоэффекты. Игровая механика. Интерфейс игры. — 15 часов.

Теория: Основы работы в среде Unity. Обучающие материалы Unity Learn «Create with code». Интеграция готовых ресурсов (ассетов). Программирование поведения объектов на языке C#.

Практика: Создание учебных проектов в Unity на основе готовых ресурсов (ассетов). Программирование управления персонажем. Физическая модель взаимодействия объектов в Unity. Добавление аудио- и видеоэффектов. Разработка пользовательского интерфейса.

Самостоятельная работа: Разработка 3-х мерных объектов для интеграции в Unity.

Решение учебных проверочных задач Unity Learn «Create with code». Планирование структуры проекта по дизайн-документу. Расширение и доработка учебных проектов.

Тема 4. Кейс «Побег из виртуальности». Знакомство с разработкой VR – приложения в Unity. – 6 часов.

Теория: Пакет-дополнение Oculus в Unity для разработки приложения для шлема виртуальной реальности. Отличия от разработки обычных приложений.

Практика: Запуск тестовой VR сцены Unity (из готового ассета). Работа с контроллерами. Перемещение/телепорт в тестовой VR сцене. Создание интерфейса в VR сцене. Исследование готовой сцены «Спасение из комнаты».

Самостоятельная работа: Дополнение проекта своими разработками – моделями, аудио- и видеоэффектами.

Тема 5. Кейс «Пересечение миров». Знакомство с Vuforia в среде Unity. – 4 часов.

Теория: Пакет-дополнение Vuforia в Unity для разработки приложения дополненной реальности для мобильных устройств. Отличия от разработки РС - приложений.

Практика: Принцип работы с системой Vuforia. Создание маркеров, импорт 3-х мерных объектов. Создание интерфейса в AR сцене. Компиляция приложения под Android-устройства.

Самостоятельная работа: Дополнение проекта своими разработками – моделями, аудио- и видеоэффектами.

4. ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

4.1. Методическое обеспечение

Основным методом организации учебной деятельности по программе является метод кейсов.

Кейс — описание проблемной ситуации понятной и близкой обучающимся, решение которой требует всестороннего изучения, поиска дополнительной информации и моделирования ситуации или объекта, с выбором наиболее подходящего.

Преимущества метода кейсов:

- Практическая направленность. Кейс-метод позволяет применить теоретические знания к решению практических задач.
- Интерактивный формат. Кейс-метод обеспечивает более эффективное усвоение материала за счет высокой эмоциональной вовлеченности и активного участия обучаемых. Участники погружаются в ситуацию с головой: у кейса есть главный герой, на место которого ставит себя команда и решает проблему от его лица. Акцент при обучении делается не на овладение готовым знанием, а на его выработку.
- Конкретные навыки. Кейс-метод позволяет совершенствовать softskills, которым уделяют мало внимания в классических образовательных учреждениях, но которые оказываются крайне необходимы на протяжении всей жизни.

В ходе работы над кейсом целесообразно использовать следующие методы, приемы, средства и формы организации, внесенные в таблицу:

№	Формы	Методы и	Возможный	Формы
	организации	приемы	дидактический	контроля
			материал	
1	Эвристическая	эвристический	Презентация,	Фронтальный и
	беседа или	метод;	плакат, карточки,	индивидуальны
	лекция	метод устного	видео	й устный опрос
	изложения,			
		позволяющий в		
		доступной форме		
	донести до			
		обучающихся		
		сложный материал		
2	Игра	практический	Правила игры.	рефлексивный
		метод;	Карточки с	самоанализ,
	игровые методы		описанием ролей	контроль и
				самооценка
			Атрибутика игры	обучающихся

3	Лабораторно-	репродуктивный	Видео,	взаимооценка
	практическая	частично-	презентация,	обучающимися
	работа	поисковый	плакаты,	работ друг
			карточки с	друга
			описанием хода	
			работы, схемы	
			сборки и т.д.	
4	Проект	исследова-	Презентация,	Защита
		тельский метод	видео, памятка	проекта,
		частично-	работы над	участие в
		поисковый (в	проектом	научной
		зависимости от	ІМОСТИ ОТ	
		уровня подготовки		
		детей)		
5	Исследование	исследовательский	Презентация,	Конференция
		метод	видео, описание	
			хода	
			исследования и	
			Т.Д.	

4.2. Материально-техническое обеспечение

- Класс, оснащенный персональными компьютерами с доступом в интернет.
- Мультимедийный проектор или широкоформатный телевизор для проведения демонстраций.
- Программное обеспечение.
- Принтер.
- Доска пластиковая настенная и набор маркеров для письма различных цветов.

4.3. Кадровое обеспечение

- Педагог дополнительного образования VR/AR-квантума.
- Педагог, преподаватель по направлению «3D технологии».
- Специалист по проектной деятельности (педагог, методист, педагогорганизатор).

5. СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

5.1 Нормативно-правовые документы

- 1. Федеральный закон «Об образовании в Российской Федерации» № 273-ФЗ от 29.12.12 года. [Электронный ресурс]. Режим доступа: base.garant.ru/70291362/ (информационно-правовой портал «Гарант»).
- 2. Приказ Министерства образования и науки Российской Федерации от 09 ноября 2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам» [Электронный ресурс]. Режим доступа: https://www.garant.ru/products/ipo/prime/doc/72016730/ (информационно-правовой портал «Гарант»).
- 3. Концепция развития дополнительного образования детей, утв. распоряжением Правительства РФ от 4.09.2014 года № 1726-р. [Электронный ресурс] Режим доступа: http://минобрнауки.рф/документы/ајах/4429 (официальный сайт Министерства образования и науки РФ).
- 4. СанПиН 2.4.4.3172-14 "Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей", утв. Главным государственным санитарным врачом РФ от 04.07.2014 N 41. [Электронный ресурс]. Режим доступа: https://www.consultant.ru/document/cons_doc_LAW_168723/ (официальный сайт справочной правовой системы «КонсультантПлюс»).
- 5. Государственная программа РФ «Развитие образования на 2013-2020 годы, утвержденной постановлением Правительства РФ № 295 от 15.04.2014 г. [Электронный ресурс]. Режим доступа: https://base.garant.ru/70643472/#friends (информационно-правовой портал «Гарант»).
- 6. Стратегия инновационного развития Российской Федерации на период до 2020 года, утвержденным распоряжением Правительства РФ № 2227-р от 08.12.2011 года. [Электронный ресурс]. Режим доступа: https://www.garant.ru/products/ipo/prime/doc/70006124/ (информационноправовой портал «Гарант»).
- 7. Федеральная целевая программа развития образования на 2016-2020 годы, утвержденной Постановлением Правительства РФ № 497 от 23.05.2015 года. [Электронный ресурс]. Режим доступа: https://base.garant.ru/71044750/ (информационно-правовой портал «Гарант»).

5.2 Информационные ресурсы для педагогов и обучающихся

- 1. Бонд, Джереми Гибсон Unity и С#. Геймдев от идеи до реализации. [Текст] / Д.Г.Бонд. СПб.: Питер, 2019. 928 с.
- 2. Мэннинг, Джон Unity для разработчика. Мобильные мультиплатформенные игры [Текст] / Д. Мэннинг, П. Батфилд-Эддисон. СПб.: Питер, 2018. 352 с.
- 3. Торн, Алан Искусство создания сценариев в Unity [Текст] / А. Торн. М.: ДМК Пресс, 2018. 362 с.
- 4. Основы разработки игр на Unity [Электронный ресурс]. https://openedu.ru/course/ITMOUniversity/UNITY/
- 5. Делаем игру на Unity [Электронный ресурс]. https://tceh.com/e/unity/
- 6. Eissen, Koos Drawing Techniques for Product Designers / K. Eissen, R. Steur. Hardcover, 2009.
- 7. Hallgrimsson, Bjarki Prototyping and Modelmaking for Product Design (Portfolio Skills) / B. Hallgrimsson. Paperback, 2012.
- 8. Hanks, Kurt Rapid Viz: A New Method for the Rapid Visualization of Ideas / K. Hanks, L. Belliston.