РЫБИНСКИЙ ФИЛИАЛ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО АВТОНОМНОГО УЧРЕЖДЕНИЯ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ЯРОСЛАВСКОЙ ОБЛАСТИ ЦЕНТРА ДЕТСКО-ЮНОШЕСКОГО ТЕХНИЧЕСКОГО ТВОРЧЕСТВА

Мобильный технопарк «Кванториум»

Согласовано: Методический совет от «23 » <u>anheua</u> 20<u>20</u>г. Протокол № <u>24 α-57</u>

Техническая направленность

Дополнительная общеобразовательная общеразвивающая программа

«Введение в робототехнику»

Возраст обучающихся: 14-18 лет Срок реализации: 1 год

Авторы-составители:

Сальников Артём Сергеевич, Горлищев Антон Юрьевич, педагоги дополнительного образования Поварова Ирина Федоровна, зам. директора по инновационной и методической работе

г. Рыбинск 2020 год

ОГЛАВЛЕНИЕ

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
1.1. Цель и задачи	5
1.2. Принципы и подходы к формированию программы	6
1.3. Планируемые результаты освоения обучающимися программ	ы7
1.4. Система оценки достижения планируемых результатов программы	
1.5. Особенности организации образовательного процесса	14
2. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН	16
3. СОДЕРЖАНИЕ ПРОГРАММЫ	19
4. ОБЕСПЕЧЕНИЕ ПРОГРАММЫ	21
4.1. Методическое обеспечение	21
4.2. Материально-техническое обеспечение	22
4.3. Описание кадровых условий реализации программы компетенций наставника)	
5. СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	27
5.1. Нормативно-правовые документы	27
5.2. Информационные источники для педагогов и обучающихся	27

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная общеразвивающая программа разработана в соответствии с Федеральным законом от 29.12.12 г. №273-ФЗ в Российской Федерации»; приказом «Об образовании Министерства образования и науки Российской Федерации (Минобрнауки России) от 09 ноября 2018 г. № 196 г. Москва «Об утверждении Порядка организации и образовательной осуществления деятельности дополнительным ПО общеобразовательным программам»; Концепцией развития дополнительного образования детей в Российской Федерации, утвержденной распоряжением Правительства РФ от 4.09.2014 г. № 1726-р; санитарно-эпидемиологическими 2.4.4.3172-14 «Требования нормативами содержанию и организации режима работы образовательных организаций дополнительного образования детей (утв. Главным государственным санитарным врачом РФ от 04.07.2014 г. № 41); Государственной программой РФ «Развитие образования на 2013-2020 годы, утвержденной постановлением Правительства РФ от 15.04.2014 г. № 295; Стратегией инновационного развития Российской Федерации на период до 2020 года, утвержденным распоряжением Правительства РФ от 08.12.2011 года № 2227-р; Федеральной целевой программой развития образования на 2016-2020 годы, утвержденной Постановлением Правительства РФ от 23.05.2015 года № 497; Уставом ГОАУ ДО ЯО Центра детско-юношеского технического творчества.

Настоящая общеобразовательная общеразвивающая программа дополнительного образования детей имеет техническую направленность и предусматривает развитие у обучающихся навыков научно-исследовательской, инженерно-практической проектной работы с использованием достижений образовательной робототехники. В основу программы лег образовательный процесс, связанный с изучением принципов проектирования, конструирования, технологического производства, сборки, программирования и эксплуатации роботов.

Вид программы: модифицированная.

В основу программы положены:

- методический инструментарий федерального тьютора Шереужева Мадина Артуровича «Сеть детских технопарков "Кванториум".
 Вводный модуль»;
- рабочая программа основного общего образования по предмету «Технология» «Робототехника», автор: Шереужев М.А., г. Москва, 2019 г.

Категория обучающихся: программа предназначена для работы с обучающимися 14-18 лет (8-11 классы общеобразовательной школы).

Функциональное предназначение программы: проектная. **Форма организации:** групповая.

Актуальность программы

Робототехника — это технический фундамент принципа бережливого производства, для обороны страны робототехника — инструмент сохранения жизней, в здравоохранении — возможность предоставления качественной медицины в труднодоступных районах, в социальной сфере — средство предоставления равных возможностей.

Программа затрагивает вопросы математического описания и математического моделирования физических процессов, создания алгоритмов перемещения и использования рабочих механизмов, разработки алгоритмов и систем управления, разработки и эксплуатации информационных и сенсорных систем, управляющей электроники, встраиваемого программного обеспечения, проектирования и конструирования.

Вытягивающая модель ведения образовательного процесса, заложенная в программе, призвана компенсировать недостаток знаний и навыков, требующих высокий уровень инженерного профессионализма. Используемое оборудование ученикам приобретать ценные компетенции, позволяет двигаясь образовательной траектории, сосредотачиваясь на робототехнике. без углубления в сложные, с точки зрения детского образования, вопросы смежных инженерных дисциплин.

Новизна программы

Новизна программы заключается в создании уникальной образовательной среды, формирующей проектное мышление обучающихся за счёт трансляции проектного способа деятельности в рамках решения конкретных проблемных ситуаций.

Актуальность программы обусловлена тем, что работа над задачами в рамках проектной деятельности формирует новый тип отношения в рамках системы «природа — общество — человек — технологии», определяющий обязательность экологической нормировки при организации любой деятельности, что является первым шагом к формированию «поколения развития», являющегося трендом развития современного общества.

Программа предполагает формирование у обучающихся представлений о тенденциях в развитии технической сферы. Новый техно-промышленный уклад не может быть положен в формат общества развития только на основании новизны физических принципов, новых технических решений и кластерных схем взаимодействия на постиндустриальном этапе развития социума, а идея развития общества непреложно включает в себя тенденцию к обретению сонаправленности антропогенных факторов, законов развития биосферы и культурного развития.

Педагогическая целесообразность этой программы заключается в целостности и непрерывности процесса обучения и позволяет обучающемуся шаг за шагом раскрывать в себе творческие возможности и реализовать их в современном мире. В процессе изучения окружающего мира, обучающиеся получат дополнительное образование в области информатики, математики и физики.

Программа предполагает вариативную реализацию в зависимости от условий на площадке.

Отличительные особенности программы

Отличительной особенностью данной программы от уже существующих образовательных программ является её направленность на развитие обучающихся в проектной деятельности современными методиками ТРИЗ и SCRUM с помощью современных технологий и оборудования.

Занятия по данной программе могут проводиться как в очной форме, так и с применением дистанционных технологий и (или) электронного обучения.

По данной программе в летний период может быть организована работа с обучающимися, которые проходят подготовку для участия в массовых мероприятиях, работают над индивидуальными или командными проектами, а также проявляют особый интерес к выбранному виду деятельности.

Образовательный процесс по данной программе ведется в соответствии с годовым календарным учебным графиком на текущий учебный год, утвержденным приказом директора ГОАУ ДО ЯО ЦДЮТТ.

1.1. Цель и задачи

Цель: вовлечение обучающихся в проектную деятельность, разработка научно-исследовательских и инженерных проектов.

Задачи:

Обучающие:

- приобретение и углубление знаний основ проектирования и управления проектами;
- ознакомление с методами и приёмами сбора и анализа информации;
- обучение проведению исследований, презентаций и межпредметной позиционной коммуникации;
- обучение работе на специализированном оборудовании и в программных средах;
- знакомство с хард-компетенциями (инженерно-техническое творчество в области робототехники), позволяющими применять теоретические знания на практике в соответствии с современным уровнем развития технологий.

Развивающие:

- формирование интереса к основам изобретательской деятельности;
- развитие творческих способностей и креативного мышления;
- приобретение опыта использования ТРИЗ при формировании собственных идей и решений;
- формирование понимания прямой и обратной связи проекта и среды его реализации, заложение основ социальной и экологической ответственности;
- развитие системного мышления и комплексного подхода к решению задач в рамках проектной деятельности;

- развитие софт-компетенций, необходимых для успешной работы вне зависимости от выбранной профессии.

Воспитательные:

- формирование проектного мировоззрения и творческого мышления;
- формирование комплексного восприятия окружающего мира и позитивно-деятельного мировоззрения;
- воспитание собственной позиции по отношению к деятельности и умение сопоставлять её с другими позициями в конструктивном диалоге;
- воспитание культуры работы в команде.

1.2. Принципы и подходы к формированию программы

Программа реализуется:

- в непрерывно-образовательной деятельности, совместной деятельности, осуществляемой в ходе режимных моментов, где обучающийся осваивает, закрепляет и апробирует полученные умения;
- в самостоятельной деятельности обучающихся, где обучающийся может выбрать деятельность по интересам, взаимодействовать со сверстниками на равноправных позициях, решать проблемные ситуации и др.;
- во взаимодействии с семьями детей.

Программа может корректироваться в связи с изменениями:

- нормативно-правовой базы дошкольного образования;
- видовой структуры групп;
- образовательного запроса родителей.

Подходы к формированию программы:

- Личностно-ориентированный. Организация образовательного процесса с учётом главного критерия оценки эффективности обучающегося — его личности. Механизм — создание условий для развития личности на основе изучения способностей обучающегося, его интересов, склонностей.
- Деятельностный. Организация деятельности в общем контексте образовательного процесса.
- Ценностный. Организация развития и воспитания на основе общечеловеческих ценностей, а также этических, нравственных и т. д.
- Компетентностный. Формирование готовности обучающихся самостоятельно действовать в ходе решения актуальных задач.
- Системный. Методологическое направление, в основе которого лежит рассмотрение обучающегося как целостного множества элементов из отношений и различных связей между ними.

- Диалогический. Организация процесса с учётом принципа диалога, субъект-субъектных отношений.
- Проблемный. Формирование программы с позиций комплексного и модульного представления её структуры как системы подпрограмм по образовательным областям и детским видам деятельности, способствующим целевым ориентирам развития.
- Культурологический. Организация процесса с учётом потенциала культуросообразного содержания дошкольного образования.

1.3. Планируемые результаты освоения обучающимися программы

1.3.1. Общие положения

обучающимся Программа даёт возможность погрузиться всё многообразие технологий, инженерных методов и подходов, используемых при робототехнических устройств. Программа проектировании знакомит обучающихся с основами функционирования электрических приводов и энергетического расчета приводов в составе робототехнических систем. Учащиеся познакомятся с методами использования обратной связи в системах управления и с различными видами источников сенсорной информации, получат компетенции начального уровня по проектированию и эксплуатации компонентов робототехнических систем. Полученные компетенции и знания обучающимся применить почти любом позволят ИΧ направлении связанного проектированием современного рынка, \mathbf{c} И эксплуатацией технических систем. Освоив программу, обучающиеся смогут выбрать наиболее интересную для них технологическую направленность, которой они будут обучаться в рамках углублённого модуля.

Программа затрагивает такие темы, как: «Механика робототехнических систем», «Системы управления с обратной связью», «Проектирование мехатронных модулей», «Основы программирования микроконтроллеров», «Многоуровневая архитектура робототехнических систем», «Основы систем технического зрения».

Программа ориентирована на дополнительное образование обучающихся школьного возраста 8 класса.

1.3.2. Структура планируемых результатов

Планируемые результаты опираются на ведущие целевые установки, отражающие основной, сущностный вклад каждой изучаемой программы в развитие личности, обучающихся, их способностей.

В структуре планируемых результатов выделяются следующие группы:

- 1. Личностные результаты освоения основной образовательной программы представлены в соответствии с группой личностных результатов.
- 2. Метапредметные результаты освоения основной образовательной программы представлены в соответствии с подгруппами универсальных учебных действий.
- 3. Предметные результаты освоения основной образовательной программы представлены в соответствии с группами результатов учебного предмета.

1.3.3. Личностные результаты

Программные требования к уровню воспитанности (личностные результаты):

- сформированность внутренней позиции обучающегося, эмоциональноположительное отношение обучающегося к школе, ориентация на познание нового;
 - ориентация на образец поведения «хорошего ученика»;
- сформированность самооценки, включая осознание своих возможностей в учении, способности адекватно судить о причинах своего успеха/неуспеха в учении; умение видеть свои достоинства и недостатки, уважать себя и верить в успех;
 - сформированность мотивации к учебной деятельности;
- знание моральных норм и сформированность морально-этических суждений, способность к решению моральных проблем на основе координации различных точек зрения, способность к оценке своих поступков и действий других людей с точки зрения соблюдения/нарушения моральной нормы.

Программные требования к уровню развития:

- сформированность пространственного мышления, умение видеть объём в плоских предметах;
- умение обрабатывать и систематизировать большое количество информации;
- сформированность креативного мышления, понимание принципов создания нового продукта;
 - сформированность усидчивости, многозадачности;
- сформированность самостоятельного подхода к выполнению различных задач, умение работать в команде, умение правильно делегировать задачи.

1.3.4. Метапредметные результаты

Математика

Статистика и теория вероятностей

Выпускник научится:

- представлять данные в виде таблиц, диаграмм;

- читать информацию, представленную в виде таблицы, диаграммы.

В повседневной жизни и при изучении других предметов выпускник сможет:

- извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Наглядная геометрия

Геометрические фигуры

Выпускник научится:

 оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов выпускник сможет:

решать практические задачи с применением простейших свойств фигур.
 Измерения и вычисления

Выпускник научится:

- выполнять измерение длин, расстояний, величин углов с помощью инструментов для измерений длин и углов.

Физика

Выпускник научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы интернета.

Информатика

Выпускник научится:

- различать виды информации по способам её восприятия человеком и по способам её представления на материальных носителях;
- приводить примеры информационных процессов (процессов, связанных с хранением, преобразованием и передачей данных) в живой природе и технике;
- классифицировать средства ИКТ в соответствии с кругом выполняемых задач.

Математические основы информатики Выпускник получит возможность:

 познакомиться с примерами математических моделей и использованием компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием.

Использование программных систем и сервисов Выпускник научится:

- классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы).

Выпускник овладеет (как результат применения программных систем и интернет-сервисов в данном курсе и во всём образовательном процессе):

- навыками работы с компьютером; знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;
- различными формами представления данных (таблицы, диаграммы, графики и т. д.);
- познакомится с программными средствами для работы с аудиовизуальными данными и соответствующим понятийным аппаратом.

Выпускник получит возможность (в данном курсе и иной учебной деятельности):

- практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- познакомиться с примерами использования математического моделирования в современном мире;
- познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной подписи); познакомиться с возможными подходами к оценке достоверности информации (пример: сравнение данных из разных источников);
- познакомиться с примерами использования ИКТ в современном мире;
- получить представления о роботизированных устройствах и их использовании на производстве и в научных исследованиях.

Технология

Результаты, заявленные образовательной программой «Технология» по блокам содержания

Формирование технологической культуры и проектно-технологического мышления обучающихся

Выпускник научится:

- следовать технологии, в том числе в процессе изготовления субъективно нового продукта;
- оценивать условия применимости технологии, в том числе с позиций экологической защищённости;
- прогнозировать по известной технологии выходы (характеристики продукта) в зависимости от изменения входов/параметров/ресурсов, проверять прогнозы опытно-экспериментальным путём, в том числе самостоятельно планируя такого рода эксперименты;
- в зависимости от ситуации оптимизировать базовые технологии (затратность — качество), проводить анализ альтернативных ресурсов, соединять в единый план несколько технологий без их видоизменения для получения сложносоставного материального или информационного продукта;
- проводить оценку и испытание полученного продукта;
- проводить анализ потребностей в тех или иных материальных или информационных продуктах;
- описывать технологическое решение с помощью текста, рисунков, графического изображения;
- анализировать возможные технологические решения, определять их достоинства и недостатки в контексте заданной ситуации;
- проводить и анализировать разработку и/или реализацию прикладных проектов, предполагающих:
- определение характеристик и разработку материального продукта, включая его моделирование в информационной среде (конструкторе), встраивание созданного информационного продукта в заданную оболочку,
- изготовление информационного продукта по заданному алгоритму в заданной оболочке;
- проводить и анализировать разработку и/или реализацию технологических проектов, предполагающих:
 - оптимизацию заданного способа (технологии) получения требующегося материального продукта (после его применения в собственной практике),

- разработку (комбинирование, изменение параметров и требований к ресурсам) технологии получения материального и информационного продукта с заданными свойствами;
- проводить и анализировать разработку и/или реализацию проектов, предполагающих:
 - планирование (разработку) материального продукта в соответствии с задачей собственной деятельности (включая моделирование и разработку документации),
 - планирование (разработку) материального продукта на основе самостоятельно проведённых исследований потребительских интересов.

Выпускник получит возможность научиться:

- выявлять и формулировать проблему, требующую технологического решения;
- модифицировать имеющиеся продукты в соответствии с ситуацией/заказом/потребностью/задачей деятельности и в соответствии с их характеристиками разрабатывать технологию на основе базовой технологии;
- технологизировать свой опыт, представлять на основе ретроспективного анализа и унификации деятельности описание в виде инструкции или технологической карты.

1.3.5. Предметные результаты

Программные требования к знаниям (результаты теоретической подготовки):

- правила безопасной работы с электронно-вычислительными машинами, электрическими цепями и электронными компонентами;
- принципы использования математического моделирования при проектировании технических систем;
- принципы проектирования и реализации встраиваемого программного обеспечения в технических системах;
- структура и состав следящего электрического привода;
- основные виды обратной связи в электрических приводах.

Программные требования к умениям и навыкам (результаты практической подготовки):

- самостоятельно решать поставленную задачу, анализируя и подбирая материалы и средства для её решения;
- уметь подобрать электрический привод согласно энергетическому расчету;
- обрабатывать данные по обратной связи;

- программировать контроллер для управления компонентами робототехнической системы с помощью жестких одноуровневых алгоритмов;
- моделировать с использованием школьных знаний технические системы.

1.4. Система оценки достижения планируемых результатов освоения программы

Виды контроля:

- промежуточный контроль, проводимый во время занятий;
- итоговый контроль, проводимый после завершения всей учебной программы.

Формы проверки результатов:

- наблюдение за обучающимися в процессе работы;
- игры;
- индивидуальные и коллективные творческие работы;
- беседы с обучающимися и их родителями.

Формы подведения итогов:

- выполнение практических работ;
- тесты;
- анкеты;
- защита проекта.

Итоговая аттестация обучающихся проводится по результатам подготовки и защиты проекта.

Для оценивания деятельности обучающихся используются инструменты само- и взаимооценки.

1.5. Особенности организации образовательного процесса

Срок реализации программы: программа рассчитана на один год, 36 академических часов в учебный год.

Режим реализации программы: занятия за проводятся в течение трех недель за учебный год, 12 часов в неделю, по 2 академических часа в день с перерывом 5-10 минут.

Наполняемость групп: 10-15 человек.

Основные положения программы

Программа «Введение в робототехнику», являясь необходимым компонентом общего образования всех обучающихся, предоставляет им возможность применять на практике знания основ наук. Программа является фактически единственным учебным курсом, отражающим в своём содержании общие принципы преобразующей деятельности человека и все аспекты

материальной культуры. Курс направлен на овладение обучающимися навыками конкретной предметно-преобразующей деятельности, создание новых ценностей, что, несомненно, соответствует потребностям развития общества.

Программа обеспечивает формирование у обучающихся технологического мышления. Схема технологического мышления (потребность — цель — способ — результат) позволяет наиболее органично решать задачи установления связей между образовательным и жизненным пространством, образовательными результатами, полученными при изучении различных предметных областей, а также собственными образовательными результатами (знаниями, умениями, универсальными учебными действиями и т. д.) и жизненными задачами.

Кроме того, схема технологического мышления позволяет вводить в образовательный процесс ситуации, дающие опыт принятия прагматичных решений на основе собственных образовательных результатов, начиная от решения бытовых вопросов заканчивая решением направлениях продолжения образования, построением карьерных и жизненных планов. Таким сформировать обучающихся программа позволяет y практических умений и опыта, необходимых для разумной организации собственной жизни; развития инициативности, создаёт условия для изобретательности, гибкости мышления.

Образовательный процесс направлен на формирование и развитие различных сторон обучающихся, связанных с реализацией как их собственных интересов, так и интересов окружающего мира. При этом гибкость программы позволяет вовлечь обучающихся с различными способностями. Большой объём проектных работ позволяет учесть интересы и особенности личности каждого обучающегося. Занятия основаны на личностно-ориентированных технологиях обучения, а также системно-деятельностном методе обучения.

Данная программа предполагает вариативный подход, так как в зависимости от обучающегося позволяет увеличить или уменьшить объём той или иной темы, в том числе и сложность, а также порядок проведения занятий. Также программа предполагает вариативную реализацию в зависимости от условий на площадке.

Обучающиеся прохождения образовательной траектории ходе информации приобретут навыки анализа И проблемных ситуаций, самостоятельного поиска решений; декомпозиции проблемных ситуаций, вычленения и ранжирования задач, составления плана работ, распределения ролей в командах; описания технических задач с использованием инженерной и научной терминологии, с пониманием данной терминологии.

Решение задач, связанных с проектированием робота позволит сформировать представление об использовании аппарата математического моделирования; развить пространственное мышление для определения форм и положения деталей в пространстве, определения взаимного расположения деталей, представления общей компоновки; изучить свойства некоторых материалов, выявлять по физико-химическим параметрам пригодность данных материалов для использования в заданных условиях; научить учащихся

представлять технические системы в виде функциональных и структурных схем; приобрести навыки работы в CAD/CAM/CAE пакетах, для проведения расчетов конструкции, 3D моделирования и подготовки технологий производства созданных деталей, расчета и моделирования электрических схем.

Производство элементов конструкции робота сформирует у обучающихся: умение работать с технологиями аддитивного производства, механической обработки с помощью лазерного гравера и 3D принтера; навыки травления печатных плат, пайки и сборки электрических схем; понимание значимости конструкторской документации, технологических карт и инструментов управления командной работой.

Процесс сборки и программирования робота в рамках данного курса научит учеников понимать структуру сложных технических изделий; программировать движение робота по стандартным базовым алгоритмам; читать и оформлять техническую документацию; разбивать технологические процессы на этапы, процессы, связанные с программированием роботов на итерации; мыслить структурно и системно. Обучающиеся продолжат изучать основы в подготовке презентации. Создадут её. Подготовятся к представлению реализованного прототипа. Представят его, защищая проект.

2. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

№ блока	Название блока/занятия	Количество часов
1	Вводный блок. LEGO Mindstorms EV3.	12
	Введение в робототехнику. Знакомство с оборудованием МК. Иструктаж по ТБ.	1
	Содержание набора. Разбор основных компонентов и деталей.	1
	Сборка основы подвижного робота.	2
Программирование движения робота.		2
	Простые программы на передвижение робота.	2
	Преодоление «полосы препятствий». Программирование сложных маршрутов.	2
	Взаимодействие с окружением. Датчики касания и дальномер.	2
2	Продвинутый блок. Программирование микроконтроллеров.	12
	Понятие «микроконтроллер». Основные законы электротехники. ПО для программирования микроконтроллеров.	1
	Содержание наборов. Разбор основных компонентов и деталей. Сборка и программирование схемы со светодиодом. Сборка и программирование схемы с пьезопищалкой.	
	Сервопривод. Сборка и программирование схемы с сервоприводом.	2
	Датчик температуры. Сборка и программирование комнатного термометра.	2
	Сборка и программирование кнопочной игры на макетной плате.	2
3	Проектный блок. Системы «умного дома»	12
	Понятие «умный дом». Распределение по проектным	1

группам.	
Выбор элемента системы «умный дом». Сбор информации.	1
Проектирование элемента системы.	2
Сборка элемента на макетной плате.	2
Программирование элемента системы	2
Исправление ошибок. Тестирование элемента системы.	2
Финализация проектов. Подготовка к презентации.	1
Презентация готовых проектов.	1
итого:	36 часов

3. СОДЕРЖАНИЕ ПРОГРАММЫ

Основные блоки программы:

1. Вводный блок. LEGO Mindstorms EV3

- Вводная часть. Знакомство с оборудованием МК и инструктаж по ТБ.
- Знакомство с набором. Основные компоненты. ПО для программирования.
- Сборка подвижного робота и его программирование.

2. Продвинутый блок. Программирование микроконтроллеров

- Понятие «микроконтроллер». Основные законы электротехники.
- Знакомство с наборами. Основные компоненты. ПО для программирования.
- Сборка схем на макетной плате и их программирование.

3. Проектный блок. Программирование микроконтроллеров

Выполнение проектных групповых заданий по сборке и программированию элементов системы «умного дома» в проектных группах. Защита групповых проектных заданий.

4. ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

4.1. Методическое обеспечение

Формы занятий:

- работа над решением кейсов;
- лабораторно-практические работы;
- лекции;
- мастер-классы;
- занятия-соревнования;
- экскурсии;
- проектные сессии.

Методы, используемые на занятиях:

- практические (упражнения, задачи);
- словесные (рассказ, беседа, инструктаж, чтение справочной литературы);
- наглядные (демонстрация мультимедийных презентаций, фотографии);
- проблемные (методы проблемного изложения) обучающимся даётся часть готового знания;
- эвристические (частично-поисковые) обучающимся предоставляется большая возможность выбора вариантов;
- исследовательские обучающиеся сами открывают и исследуют знания;
- иллюстративно-объяснительные;
- репродуктивные;
- конкретные и абстрактные, синтез и анализ, сравнение, обобщение, абстрагирование, классификация, систематизация, т. е. методы как мыслительные операции;
- индуктивные, дедуктивные.

Основным методом организации учебной деятельности по программе является метод кейсов.

Кейс — описание проблемной ситуации понятной и близкой обучающимся, решение которой требует всестороннего изучения, поиска дополнительной информации и моделирования ситуации или объекта, с выбором наиболее подходящего.

Преимущества метода кейсов:

- Практическая направленность. Кейс-метод позволяет применить теоретические знания к решению практических задач.
- Интерактивный формат. Кейс-метод обеспечивает более эффективное усвоение материала за счет высокой эмоциональной вовлеченности и активного участия обучаемых. Участники погружаются в ситуацию с головой: у кейса есть главный герой, на место которого ставит

себя команда и решает проблему от его лица. Акцент при обучении делается не на овладение готовым знанием, а на его выработку.

– Конкретные навыки. Кейс-метод позволяет совершенствовать универсальные навыки (soft-компетенции), которые оказываются крайне необходимы в реальном рабочем процессе.

4.2. Материально-техническое обеспечение

N₂	Наименование	Краткие технические	Ед.	Кол-
п/п		характеристики	изм.	В0
1	Компьютерный класс ИКТ			
1.1.	Ноутбук наставника с предустановленн ой операционной системой, офисным программным обеспечением	Ноутбук: производительность процессора (по тесту PassMark — CPU BenchMark http://www.cpubenchmark.net/): не менее 2000 единиц; объём оперативной памяти: не менее 4 Гб; объём накопителя SSD/eMMC: не менее 128 Гб; ПО для просмотра и редактирования текстовых документов, электронных таблиц и презентаций распространённых форматов (.odt, ,txt, .rtf, .doc, .docx, .ods, .xls, .xlsx,	IIIT.	
1.2.	Ноутбук с предустановленн ой операционной системой, офисным программным обеспечением	оdр, .ppt, .pptx). Ноутбук: не ниже Intel Pentium N (или Intel Celeron N), не ниже 1600 МГц, 1920х1080, 4Gb RAM, 128Gb SSD; производительность процессора: не менее 2000 единиц; ПО для просмотра и редактирования текстовых документов, электронных таблиц и презентаций распространённых форматов (.odt, ,txt, .rtf, .doc, .docx, .ods, .xls, .xlsx, .odp, .ppt, .pptx).	IIIT.	6
1.3	Набор для	Базовый набор LEGO Mindstorms	Шт	0
	робоконструиров ания	EV3		6

1.4	Набор для программирован ия микроконтролле	Набор «Матрешка Z»	Шт	6
1.5	ров Набор для программирован ия микроконтролле ров	Набор «Йодо»	Шт	6
1.6	Набор для освоения основ робоконструиров ания и программирован	Набор «Робоняша»	Шт	6
	ИЯ			0
2				
2.1	3D- оборудование (3D-принтер)	Минимальные: тип принтера: FDM; материал: PLA; рабочий стол: с подогревом; рабочая область (XYZ): от 180х180х180 мм; скорость печати: не менее 150 мм/сек; минимальная толщина слоя: не более 15 мкм; формат файлов (основные): STL, OBJ; закрытый корпус: наличие.	ШТ.	1
22	Пластик для 3D- принтера	Толщина пластиковой нити: 1,75 мм; материал: PLA; вес катушки: не менее 750 гр.	ШТ.	2
23	ПО для 3D- моделирования	Облачный инструмент САПР/АСУП, охватывающий весь процесс работы с изделиями — от проектирования до изготовления.		<i>-</i>

4.3. Описание кадровых условий реализации программы (описание компетенций наставника)

Наставник программы «Робототехника» работает на стыке самых актуальных знаний по направлению робототехника и фундаментальных знаний

по дисциплинам математика, физика и информатика, а также генерирует новые подходы и решения, воплощая их в реальные проекты. Наставник является грамотным специалистом в области инженерии и/или информационных технологий, следит за новостями своей отрасли, изучает новые технологии. Обладает навыками проектной деятельности, внедряя её принципы в процесс обучения.

Наставник в равной степени обладает как системностью мышления, так и духом творчества; мобилен, умеет работать в команде, критически мыслить, анализировать и обобщать опыт, генерировать новое, умеет ставить задачи и решать их, а также работать в условиях неопределённости и в рамках проектной парадигмы. Помимо этого, наставник обладает педагогической харизмой.

5. СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ 5.1. Нормативно-правовые документы

- 1. Федеральный закон «Об образовании в Российской Федерации» № 273-Ф3 от 29.12.12 года. [Электронный ресурс]. Режим доступа: http://base.garant.ru/70291362/ (информационно-правовой портал «Гарант»).
- 2. Приказ Министерства образования и науки Российской Федерации от 29 августа 2013 г. № 1008 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам» [Электронный ресурс]. Режим доступа: http://www.garant.ru/products/ipo/prime/doc/70424884/ (информационно-правовой портал «Гарант»).
- 3. Концепция развития дополнительного образования детей, VTB. 4.09.2014 года распоряжением Правительства РΦ OT No 1726-р. [Электронный pecypcl Режим доступа: http://минобрнауки.рф/документы/ajax/4429 (официальный сайт Министерства образования и науки РФ).
- 4. СанПиН 2.4.4.3172-14 "Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных дополнительного образования детей", от 04.07.2014 государственным санитарным врачом РФ N 41. [Электронный Режим pecype]. доступа: https://www.consultant.ru/document/cons doc LAW 168723/ (официальный сайт справочной правовой системы «КонсультантПлюс»).
- 5. Государственная программа РФ «Развитие образования на 2013-2020 годы, утвержденной постановлением Правительства РФ № 295 от 15.04.2014 г. [Электронный ресурс]. Режим доступа: http://base.garant.ru/70643472/ (информационно-правовой портал «Гарант»).
- 6. Стратегия инновационного развития Российской Федерации на период до 2020 года, утвержденным распоряжением Правительства РФ № 2227-р от 08.12.2011 года. [Электронный ресурс]. Режим доступа: http://base.garant.ru/70106124/ (информационно-правовой портал «Гарант»).
- 7. Федеральная целевая программа развития образования на 2016-2020 годы, утвержденной Постановлением Правительства РФ № 497 от 23.05.2015 года. [Электронный ресурс]. Режим доступа: http://base.garant.ru/71044750/ (информационно-правовой портал «Гарант»).

5.2. Информационные источники для педагогов и обучающихся

- 1. Бейктал, Дж. Конструируем роботов на Arduino. Первые шаги [Текст] / Дж. Бектал. М: Лаборатория Знаний, 2016.
- 2. Бишоп, О. Настольная книга разработчика роботов [Текст] / О. Бишоп. СПб.: КОРОНА-ВЕК, 2010.

- 3. Блум, Д. Изучаем Arduino. Инструменты и метод технического волшебства [Текст] / Д. Блум. СПб: БХВ-Петербург, 2016.
- 4. Вильямс, Дж. Программируемые роботы. Создаем робота для своей домашней мастерской [Текст] / Дж.Вильямс; пер. с англ. А. Ю. Карцева. М.: НТ Пресс, 2006.
- 5. Воротников, С.А. Информационные устройства робототехнических систем: учебное пособие [Текст] / С.А. Воротников. М.: Изд-во МГТУ им Н.Э. Баумана, 2005.
- 6. Копосов, Д.Г. Технология. Робототехника. 5-8 класс. Учебное пособие [Текст] / Д.Г. Копосов. М.: Бином, 2017.
- 7. Мирошина, Т. Ф. Образовательная робототехника на уроках информатики и физике в средней школе: учебно-методическое пособие [Текст] / Т.Ф. Мирошина. Челябинск: Взгляд, 2011.
- 8. Момот, М. Мобильные роботы на базе Arduino [Текст] / М. Момот. СПб.: БХВ-Петербург, 2017.
- 9. Никулин, С.К. Содержание научно-технического творчества учащихся и методы обучения [Текст] / С.К. Никулин, Г.А. Полтавец, Т.Г. Полтавец. М.: Изд. МАИ. 2004.
- 10. Перфильева, Л. П. Образовательная робототехника во внеурочной учебной деятельности: учебно-методическое [Текст] / Л.П. Перфильева. Челябинск: Взгляд, 2011.
- 11. Петин, В.А. Проекты с использованием контроллера Arduino [Текст] / В.А. Петин. СПб: БХВ-Петербург, 2015.
- 12. Петин, В.А.Практическая энциклопедия Arduino [Текст] / В.А. Петин, А.А. Биняковский. М.: ДМК Пресс, 2017.
- 13. Платт, Ч. Электроника для начинающих [Текст] / Ч. Платт. Спб.: БХВ-Петербург, 2015.
- 14. Полтавец, Г.А. Системный подход к научно-техническому творчеству учащихся (проблемы организации и управления) [Текст] / Г.А. Полтавец, С.К. Никулин, Г.И. Ловецкий, Т.Г. Полтавец. М.: Издательство МАИ. 2003.
- 15. Предко, М. 123 Эксперимента по робототехнике [Текст] / М. Предко. М.: HT Пресс, 2007.
- 16. Предко, М. Устройства управления роботами. Схемотехника и программирование [Текст] / М.Предко. М.: ДМК Пресс. 2005.
- 17. Соммер, У. Программирование микроконтроллерных плат Arduino/Freeduino [Текст] / У. Соммер. Спб.: БХВ-Петербург, 2010.
- 18. Филиппов, С. Уроки робототехники. Конструкция. Движение. Управление [Текст] / С. Филиппов. М.: Лаборатория знаний, 2017.
- 19. Шереужев, М.А. Промробоквантум тулкит. Методический инструментарий наставника [Текст] / М.А. Шереужев. М., 2019. 122 с.
- 20. Юревич, Е. И. Основы робототехники [Текст] / Е.И. Юревич. СПб.: БХВ-Петербург, 2005.